Lamborghini Sesto Elemento Technology Ambitious target reached with ease
The Sant'Agata Bolognese engineers had set themselves a target that was more than ambitious despite the ten cylinders and 570 hp, despite the exceptionally fast-shifting e.gear transmission and even despite the permanent all-wheel drive, the Sesto Elemento still had to stay below the 1,000 kilogram mark. And that target was achieved; at a curb weight of 999 kilograms, each hp produced by the V10 power unit has to accelerate only 1.75 kilograms a sensational figure.
The Sant'Agata Bolognese engineers had set themselves a target that was more than ambitious despite the ten cylinders and 570 hp, despite the exceptionally fast-shifting e.gear transmission and even despite the permanent all-wheel drive, the Sesto Elemento still had to stay below the 1,000 kilogram mark. And that target was achieved; at a curb weight of 999 kilograms, each hp produced by the V10 power unit has to accelerate only 1.75 kilograms a sensational figure.
This was made possible by the systematic and intelligent use of state-of-the-art carbon-fiber technologies. Lamborghini possesses extensive experience in the field of lightweight engineering, gathered over many years: something clearly demonstrated by the brand's series production vehicles. The current Gallardo LP 570-4 Superleggera has a dry weight of only 1,340 kilograms, marking a competitive best in this category of super sports cars. Compared with the already extremely lean Gallardo LP 560-4 Coupé, this represents a further reduction of 70 kilograms, resulting largely from the use of carbon fiber in the body-shell, interior and technical components.
Lamborghini engineers stuck firmly to this approach for the Sesto Elemento. Its structure consists almost entirely of carbon fiber and is built using the monocoque principle. Monocoque means that the vehicles load-bearing structure is manufactured as a single shell, with the physical properties of one component, and thus makes optimum use of the extreme stiffness offered by CFRP materials. Formula 1 racing cars have been built using CFRP monocoques for decades and regularly provide clear evidence of their collision safety. The monocoque in the Sesto Elemento, however, is made using innovative Forged Composite technology the first time this has been done in an automobile. The advantage of the Forged Composite is that the monocoque is obtained through a one-shot process.
Carbon-fiber crash boxes
In the Lamborghini Sesto Elemento, the monocoque forms the complete passenger cell. Connected to it are the front subframe - incorporating the suspension points - and the crash boxes, both also made using specialized carbon-fiber technologies. The extreme stiffness of this assembly guarantees not only a very high level of safety, but also unparalleled handling precision. The rear subframe with the engine mount and rear axle
suspension points is made from aluminum another lightweight material with which Lamborghini has a great deal of experience.
An important element in optimum construction using CFRP technology is the maximum integration of functions. Thus, the body-shell exterior is made up only of the roof section, which is part of the monocoque, the two "cofango" covers front and rear with integrated aerodynamic components and the doors. Each door consists of only two elements, the exterior skin and the interior cladding, both of which are also permanently bonded to create one component.
Carbon fiber even in the suspension
The suspension and the area around the engine have also been optimized with lightweight engineering. Alongside aluminum components, there are also carbon-fiber control arms: innovative Forged Composite technology is also well-suited to this kind of high-load part. These components are around 30 percent lighter than comparable aluminum parts. The propeller shaft is also made of CFRP by using Wrapping technology. This solution allowed the Lamborghini engineers to get rid of the central joint, bringing an important weight saving. The rims are also made from CFRP, while the brake discs are from carbon-ceramic composite material. A similar composite material is used for the tailpipes on the exhaust system the compound of ceramic powder and synthetic resin makes this carbon material extremely heat resistant. A large number of screw fastenings feature a special titanium alloy and joining technology from the aviation sector.
Based on the form, function and operational demands of the individual Sesto Elemento components, engineers from Lamborghini's R&D selected largely from three CFRP manufacturing techniques within their technology tool kit:
Forged Composite: Here, materials with short carbon fibers are hot pressed in a mould. The process facilitates complex structures and is used for parts such as the underside of the monocoque and the suspension arms.
Prepreg: The carbon-fiber mats are soaked in a thermoset liquid resin. They are pressed in moulds and cured in an oven under heat and pressure. Prepreg components have a very good surface finish and are therefore the preferred choice for use in visible areas.
Braiding: This is a method to manufacture composite filament derived from the textile industry. Each thread is diagonally intertwined on different levels.
Lamborghini engineers stuck firmly to this approach for the Sesto Elemento. Its structure consists almost entirely of carbon fiber and is built using the monocoque principle. Monocoque means that the vehicles load-bearing structure is manufactured as a single shell, with the physical properties of one component, and thus makes optimum use of the extreme stiffness offered by CFRP materials. Formula 1 racing cars have been built using CFRP monocoques for decades and regularly provide clear evidence of their collision safety. The monocoque in the Sesto Elemento, however, is made using innovative Forged Composite technology the first time this has been done in an automobile. The advantage of the Forged Composite is that the monocoque is obtained through a one-shot process.
Carbon-fiber crash boxes
In the Lamborghini Sesto Elemento, the monocoque forms the complete passenger cell. Connected to it are the front subframe - incorporating the suspension points - and the crash boxes, both also made using specialized carbon-fiber technologies. The extreme stiffness of this assembly guarantees not only a very high level of safety, but also unparalleled handling precision. The rear subframe with the engine mount and rear axle
suspension points is made from aluminum another lightweight material with which Lamborghini has a great deal of experience.
An important element in optimum construction using CFRP technology is the maximum integration of functions. Thus, the body-shell exterior is made up only of the roof section, which is part of the monocoque, the two "cofango" covers front and rear with integrated aerodynamic components and the doors. Each door consists of only two elements, the exterior skin and the interior cladding, both of which are also permanently bonded to create one component.
Carbon fiber even in the suspension
The suspension and the area around the engine have also been optimized with lightweight engineering. Alongside aluminum components, there are also carbon-fiber control arms: innovative Forged Composite technology is also well-suited to this kind of high-load part. These components are around 30 percent lighter than comparable aluminum parts. The propeller shaft is also made of CFRP by using Wrapping technology. This solution allowed the Lamborghini engineers to get rid of the central joint, bringing an important weight saving. The rims are also made from CFRP, while the brake discs are from carbon-ceramic composite material. A similar composite material is used for the tailpipes on the exhaust system the compound of ceramic powder and synthetic resin makes this carbon material extremely heat resistant. A large number of screw fastenings feature a special titanium alloy and joining technology from the aviation sector.
Based on the form, function and operational demands of the individual Sesto Elemento components, engineers from Lamborghini's R&D selected largely from three CFRP manufacturing techniques within their technology tool kit:
Forged Composite: Here, materials with short carbon fibers are hot pressed in a mould. The process facilitates complex structures and is used for parts such as the underside of the monocoque and the suspension arms.
Prepreg: The carbon-fiber mats are soaked in a thermoset liquid resin. They are pressed in moulds and cured in an oven under heat and pressure. Prepreg components have a very good surface finish and are therefore the preferred choice for use in visible areas.
Braiding: This is a method to manufacture composite filament derived from the textile industry. Each thread is diagonally intertwined on different levels.
{ 0 komentar... read them below or add one }
Posting Komentar